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ABSTRACT  
 
This paper reviews the deflection of the vertical and its use and abuse in geodetic 
surveying.  Importantly, the deflection of the vertical in Australia will change by 
around 6” upon the implementation of the Geocentric Datum of Australia (GDA94).  
Therefore, for some applications, the deflection of the vertical may no longer simply 
be neglected in survey computations and adjustments.  With the release of 
AUSGeoid98, absolute deflections of the vertical with respect to the GRS80 ellipsoid 
are now available for this purpose.  The improvements made when using these 
deflections of the vertical in a terrestrial network adjustment on the GDA94 will be 
demonstrated for a case study in Western Australia. 
 
 

INTRODUCTION  
 
Almost all terrestrial survey measurements, with the exception of spatial distances, 
are made with respect to the Earth’s gravity vector, because a spirit bubble is usually 
used to align survey instruments.  Accordingly, these measurements are nominally 
oriented with respect to the level (equipotential) surfaces and plumblines of the 
Earth’s gravity field, which undulate and are not parallel in a purely geometrical 
sense.  This renders them impractical for survey computations and the representation 
of positions.  Therefore, account must be made for the orientation of the survey 
instruments in the Earth’s gravity field, so that the measurements are of practical use.  
 
Historically, geodesists have introduced a mathematically simpler ellipsoid that is a 
close fit to the geoid (the level surface that closely coincides with mean sea level) 
over the region to be surveyed and mapped.  As the level surfaces and plumblines are 
orthogonal by definition, this is equivalent to closely aligning the ellipsoidal normals 
with the plumblines over the area of interest.  This was the case with the Australian 
National Spheroid (ANS), whose orientation was chosen to give a best fit to the level 
surfaces and plumblines over Australia (Bomford, 1967).  The result is that survey 
measurements made with respect to the gravity vector in Australia can be assumed to 
have been oriented with respect to the ANS, thereby simplifying survey reductions 
and computations on the Australian Geodetic Datum (AGD).  For most applications, 
the separation between the geoid and ANS and the angular differences between the 
plumbline and the ANS ellipsoidal normal could usually be neglected. 
 
With the adoption of the Geocentric Datum of Australia or GDA94 (eg. Featherstone, 
1996), these simplifying assumptions will not necessarily remain valid (Featherstone, 
1997).  This is because the geocentric GRS80 ellipsoid (Moritz, 1980) used for the 
GDA94 is a best fit to the level surfaces and plumblines of the Earth’s gravity field 
on a global scale, and does not provide a best fit over Australia.  More importantly, 
survey observations made with respect to the gravity vector do not change with a 
change of datum (Heiskanen and Moritz, 1967).  Therefore, terrestrial surveys 
conducted after the adoption of the GDA94 are more likely to require that the 
separation between the geoid and GRS80 and the angular differences between the 
plumbline and the GRS80 ellipsoidal normal be taken into account during survey 
data reduction and adjustment.  
 



This paper reviews some of the various definitions of the deflection of the vertical 
and illustrates its use and abuse in surveying.  Importantly, the change to the 
geocentric GRS80 ellipsoid from the locally oriented ANS ellipsoid represents a 
change in concept that has implications on the reduction and adjustment of terrestrial 
survey data.  Since the deflection of the vertical in Australia will change by around 6” 
upon the implementation of the geocentric GRS80 ellipsoid (Featherstone, 1997), the 
corrections for its effect can no longer be simply ignored.  Fortunately, however, with 
the release of AUSGeoid98 (Johnston and Featherstone, 1998), a model of the 
deflections of the vertical with respect to the GRS80 ellipsoid is available, which can 
be used to apply corrections to survey data.  A case study in Western Australia will 
be used to demonstrate the improvements made when using AUSGeoid98 deflections 
of the vertical in a terrestrial network adjustment on the GDA94. 
 
 

THE DEFLECTION OF THE VERTICAL  
 
The deflection of the vertical (θθθθ) is the angular difference between the direction of 
the gravity vector (g), or plumbline at a point, and the corresponding ellipsoidal 
normal through the same point for a particular ellipsoid (Figure 1).  Since the 
plumblines are orthogonal to the level surfaces by definition, the deflection of the 
vertical also gives a measure of the gradient of the level surfaces (including the 
geoid) with respect to a particular ellipsoid.  Accordingly, the deflection of the 
vertical is classified as absolute when it refers to a geocentric ellipsoid and relative 
when it refers to a local ellipsoid.  Depending on the choice of ellipsoid, the 
deflection of the vertical can reach 20” in lowland regions and up to 70” in regions of 
rugged terrain (Bomford, 1980).  In Australia, the largest measured deflection of the 
vertical with respect to the ANS is around 30” (Fryer, 1971).   
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Figure 1.  The deflection of the vertical (θ) 
 
The deflection of the vertical, which is a vector quantity, is usually decomposed into 
two mutually perpendicular components: a north-south or meridional component (ξ), 
which is reckoned positive northward, and an east-west or prime vertical component 
(η), which is reckoned positive eastward.  In other words, the deflection components 
are positive if the direction of the gravity vector points further south and further west 
than the corresponding ellipsoidal normal (Vanicek and Krakiwsky, 1986), or the 
level surface is rising to the south or west, respectively, with respect to the ellipsoid 
(Bomford, 1980).  These two components reduce to the total deflection of the vertical 
according to Pythagoras’ theorem 



 θ2 = ξ2 + η2         (1) 

and the component of the deflection of the vertical can be resolved along a geodetic 
azimuth (α) by 

 ε = ξ cos α + η sin α        (2) 
 
It is important to distinguish the exact point at which the deflection of the vertical 
applies, since the deflection of the vertical varies depending upon its position along 
the plumbline.  Equivalently, the direction of the gravity vector varies along the 
plumbline.  This is because the level surfaces and plumblines are curved due to mass 
distributions inside the Earth’s surface.  Accordingly, the deflection of the vertical 
can be defined at the geoid or at any other point, such as at the surface of the Earth.  
It is acknowledged that there are other subtly different definitions of the deflection of 
the vertical (Torge, 1991), but only two cases will be considered here. 
 
Vertical Deflection at the Geoid 
The deflection of the vertical at the geoid (θG) is defined by Pizzetti (Torge, 1991) as 
the angular difference between the direction of the gravity vector and the ellipsoidal 
normal through the same point at the geoid.  This can be an absolute or relative 
quantity.  However, the vertical deflection at the geoid cannot be directly observed on 
land because of the presence of the topography.  Therefore, deflections of the vertical 
that are observed at the Earth’s surface have to be reduced to the geoid or vice versa 
by accounting for the curvature of the plumbline (described later), which is 
notoriously problematic.   
 
As an alternative, absolute deflections of the vertical with respect to a geocentric 
ellipsoid, such as GRS80, can be computed from gravity measurements using 
Vening-Meinesz’s formula (eg. Heiskanen and Moritz, 1967; Vanicek and 
Krakiwsky, 1986).  However, nowadays it is more convenient to relate the deflection 
of the vertical at the geoid to the gradient of a gravimetric geoid model that has been 
computed with respect to a geocentric ellipsoid.  This can be conceptualised as the 
reverse process of Helmert astrogeodetic levelling or astrogeodetic geoid 
determination (eg. Bomford, 1980; Heiskanen and Moritz, 1967).  This use of a 
gravimetric geoid model is considered more convenient because many such models 
have already been computed for the transformation of GPS ellipsoidal heights to 
orthometric heights.  
 
The approach is as follows: given a regular grid of gravimetric geoid-ellipsoid 
separations, the meridional (ξG) and prime vertical (ηG) components of the absolute 
deflection of the vertical at the geoid can be estimated (eg. Torge, 1991) by 

 ξG = – ∆N / (µ ∆φ)        (3) 

 ηG = – ∆N / (ν ∆λ cos φ)       (4) 

where the subscript G is used to distinguish these components of the deflection of the 
vertical at the geoid, µ is the radius of curvature of the GRS80 ellipsoid in the 
meridian at the point of interest, ν is the radius of curvature of the GRS80 ellipsoid in 
the prime vertical at the point of interest, φ is the geodetic latitude, and ∆N refers to 
the change in the gravimetric geoid-ellipsoid separation between grid nodes of 



latitude (∆φ) and longitude (∆λ).  This approach has been applied to the 
AUSGeoid98 gravimetric geoid model of Australia (Johnston and Featherstone, 
1998) and the east-west and north-south deflection components from GRS80 are 
available with this product from http://www.auslig.gov.au/geodesy/geoid.htm.  
 
Vertical Deflection at the Earth’s Surface 
The deflection of the vertical at the surface of the Earth (θS) is defined by Helmert 
(Torge, 1991) as the angular difference between the direction of the gravity vector 
and the ellipsoidal normal through the same point at the Earth’s surface.  This can 
also be an absolute or relative quantity.  The deflection of the vertical at the surface 
of the Earth is of more practical use than the deflection of the vertical at the geoid, 
because survey measurements are made at the Earth’s surface and are thus affected 
by the deflection of the vertical at this point.   
 
The deflection of the vertical at the Earth’s surface can be computed simply by 
comparing astronomical and geodetic coordinates at the same point on the Earth’s 
surface.  The corresponding deflection of the vertical in the prime vertical is the 
difference between astronomical latitude (Φ) and the geodetic latitude (φ) of the same 
point.  Likewise, the deflection of the vertical in the meridian is the difference, scaled 
for meridional convergence, between astronomical longitude (Λ) and the geodetic 
longitude (λ) of the same point.  These are given, respectively, by 

 ξS = Φ – φ         (5) 

 ηS = (Λ – λ) cos φ        (6) 

where the subscript S is used to distinguish these components of the deflection of the 
vertical at the surface of the Earth, and it is assumed that the minor axis of the 
ellipsoid is parallel to the mean spin axis of the Earth’s rotation (Bomford, 1980). 
 
Probably the most important implication of the relations in equations (5) and (6) is to 
choose the relative deflection of the vertical to be as small as possible through an 
appropriate orientation of the local ellipsoid.  This allows the natural coordinates 
observed in the Earth’s gravity field to be assumed equal to geodetic coordinates on 
the local ellipsoid.  This was the principal reasoning behind the orientation of the 
ANS in Australia (Bomford, 1967) and why the (now absolute) deflections of the 
vertical will change by approximately 6” with the use of the geocentric GRS80 
ellipsoid (Featherstone, 1997).   
 
Curvature of the Plumbline 
As stated, the deflection of the vertical changes with position along the curved 
plumbline.  Therefore, the deflection of the vertical at the geoid (θG) does not 
necessarily equal that at the Earth’s surface (θS) and vice versa.  In order to equate 
these two quantities, the curvature of the plumbline between the geoid and Earth’s 
surface (δθGS) is required.  This quantity can not be observed directly because of the 
presence of the topography, so must be estimated using a model of the Earth’s gravity 
field within the topographic masses. 
 



The curvature of the plumbline can be estimated using an approximate formula 
(Vanicek and Krakiwsky, 1986; Bomford, 1980), which is based on normal gravity 
and thus only affects the north-south deflection component (δξGS).  This is 

δξGS = δθGS = 0.17” sin 2φ H       (7) 

where H is the orthometric height (in kilometres), which is measured along the 
plumbline between the geoid and surface of the Earth.  The evaluation of the actual 
curvature of the plumbline presents a very difficult task however.  This is because 
exact values of gravity along the plumbline cannot be measured, and for them to be 
modelled requires detailed knowledge of the mass distribution in the topography.  A 
crude estimate of the curvature of the plumbline is δεGS=3.3” per kilometre in rugged 
terrain (Vanicek and Krakiwsky, 1986), which makes the typical values in Australia 
probably less than 1”.  However, until the actual curvature of the plumbline is 
known, these approximations are barely useful (Bomford, 1980) and is thus ignored.   
 
 

THE USE OF VERTICAL DEFLECTIONS  
 
Historically, the most influential use of the deflection of the vertical led to the 
principle of isostasy, which is used to describe the broad geophysical structure of the 
Earth’s crust.  The vertical deflections, observed as part of the 1735-1744 Peruvian 
expedition to determine whether an oblate or prolate spheroid approximated the 
figure of the Earth, were shown by Bouguer to be smaller than expected.  This and 
subsequent measurements formed the basis for the two models of isostatic 
compensation developed by Airy-Heiskanen and Pratt-Heyford.  These models are 
analogous with Archimedes’ principle, where the masses of mountains are buoyantly 
compensated by a thickening of the crust (Airy-Heiskanen model) or a variation in 
the mass density of the crust (Pratt-Heyford model).  However, these two models do 
not always apply in practice because of the overriding geophysical and mechanical 
properties of the Earth’s crust. 
 
In terrestrial surveying, the deflection of the vertical has three primary uses: 
1. transformation of astronomical coordinates to geodetic coordinates; 
2. conversion of astronomic azimuth to geodetic azimuth; and 
3. reduction of vertical and horizontal angles to the spheroid.  
 
Transformation of Coordinates 
The deflections of the vertical provide the transformation between astronomical 
(natural) coordinates (Φ, Λ), observed with respect to the gravity vector, and the 
desired geodetic coordinates (φ, λ) on the ellipsoid.  Rearranging equations (5) and 
(6), and adhering to the same approximations, gives the coordinate transformation as  

 φ = Φ – ξS         (8) 

 λ = Λ – (ηS sec φ)        (9) 

where the deflections of the vertical refer to the surface of the Earth, since this is the 
point at which the astronomic coordinates are usually measured.  If the deflections of 
the vertical at the geoid are used in equations (8) and (9), the limitation imposed by 
the curvature of the plumbline should be acknowledged. 



 
Laplace’s Equation for Azimuth 
The deflections of the vertical at the Earth’s surface are also required to convert an 
observed astronomic azimuth (A) to a geodetic azimuth (α).  This is achieved using 

 α = A – (ηS tan φ) – (ξS sin α – ηS cos α) cot z            (10) 

where z is the geodetic zenith angle between the observing and observed stations.  
For most geodetic networks, z is very close to 90 degrees which reduces equation 
(10) to the well-known Laplace correction  

 α = A – (ηS tan φ)                (11) 
 
The most common use of equation (11) is at Laplace stations, which were used to 
constrain geodetic azimuth in terrestrial geodetic networks, where systematic 
atmospheric refraction and undulations in the level surfaces become problematic over 
longer distances.  For example, open-ended traverses were conducted across 
Australia during the establishment of the AGD.  Rather than closing the traverse in a 
loop, which would increase the survey effort and thus cost, Laplace stations were 
used to control the azimuth (Bomford, 1967; National Mapping Council, 1986).  The 
Laplace correction must also be applied to stellar observations of astronomic 
azimuth, if they are to be used to orient a survey network with respect to only a single 
control point.   
 
Horizontal and Vertical Angles  
Horizontal directions and angles have to be corrected for the deflection of the vertical 
at the Earth’s surface when the instrument and target are not coplanar.  This can be 
conceptualised as an error like that encountered due to the misalignment of a 
theodolite or total station.  Assuming that the skew normal correction has been 
applied between stations (eg. Vanicek and Krakiwsky, 1986), the correction to a 
measured horizontal direction (Bomford, 1980) is  

 d = D – (ξS sin α – ηS cos α) tan (90 - z)              (12) 

where d is the desired direction related to the ellipsoid, D is the measured direction 
with respect to the gravity vector at the Earth’s surface, and (90-z) is the vertical 
angle between the observing and observed stations.  If the observing and observed 
stations are at the same height above the ellipsoid, then the effect of the deflection of 
the vertical on horizontal directions is zero.   
 
If this correction is required for horizontal angles instead of directions, the correction 
term in equation (12) is simply that of the direction with greater azimuth minus that 
of the direction with smaller azimuth (Bomford, 1980).  Alternatively, the corrected 
directions can be subtracted to give the corrected angles.  The error committed due to 
the neglect of this correction term also propagates along a traverse, hence the need 
for regular Laplace stations (cf. Bomford, 1967).  
 
Vertical angles also have to be corrected for the deflection of the vertical at the 
Earth’s surface, for exactly the same reasons as horizontal angles.  Again, the skew 
normal corrections and corrections for the Earth’s curvature are assumed to have 
been applied.  In the case of a single measured zenith angle, the component of the 
deflection of the vertical at the Earth’s surface in the azimuth of the observation is 



required. Accordingly, equation (2) for deflections of vertical at the surface of the 
Earth is applied to the observed zenith angle (Z) to yield the geodetic zenith angle (z) 
with respect to the ellipsoidal normal (Vanicek and Krakiwsky, 1986) 

z = Z + (ξS cos α + ηS sin α)                (13) 

In the case of vertical angles, the sign of the correction term is simply reversed.  In 
reciprocal trigonometric levelling, a large proportion of the vertical deflection cancels 
on differencing.  Nevertheless, equation (13) should still be applied to each 
observation, especially for long baselines. 
 
 

THE ABUSE OF VERTICAL DEFLECTIONS  
 
The most common abuse of vertical deflections is their neglect in survey reductions 
and computations.  Whilst this was usually acceptable for surveys with respect to the 
AGD, it will not normally be acceptable for reduction of terrestrial survey data to the 
GDA94 (Featherstone, 1997).  As stated, this is because the generally small relative 
deflections of the vertical will be replaced by absolute deflections of the vertical, 
which differ by approximately 6”.  Alternatively, surveys on the GDA94 can be 
designed such that the systematic effects of the deflection of the vertical either cancel 
or are minimised (cf. Dymock et al., 1999).  The following examples illustrate the 
effects of ignoring vertical deflections on measured coordinates, azimuths, and 
horizontal and vertical angles.   
 
Transformation of Coordinates 
Featherstone (1997) has quantified the effect of neglecting the vertical deflection on 
the transformation of astronomic coordinates to geodetic coordinates on the GDA94.  
This approach is repeated using the AGD84 to GDA94 transformation parameters 
(AUSLIG, 1998) and the absolute deflections of the vertical at the geoid computed 
from AUSGeoid98 (Johnston and Featherstone, 1998).  Note that the curvature of the 
plumbline is neglected in this example, since AUSGeoid98 yields ξG and ηG whereas 
ξS and ηS are required in equations (8) and (9).  However, given that the deflection of 
the vertical with respect to the GRS80 ellipsoidal normal is expected to be much 
larger than the curvature of the plumbline (several seconds versus less than one 
second), this will have the dominant effect and thus suffice for this comparison. 
 
Table 1 shows GDA94 coordinates of the Johnston origin station, which have been 
transformed from astronomical coordinates using the AUSGeoid98 deflections of the 
vertical (equations 8 and 9).  The east-west and north-south deflection components 
have been derived from the AUSGeoid98 grid using bi-cubic interpolation.  Table 1 
also shows the GDA94 coordinates transformed using the seven-parameter datum 
transformation (AUSLIG, 1998).  The latter assumes a zero deflection of the vertical 
with respect to the ANS, which is justified for the Johnston station under 
consideration, since this is the origin point of the AGD (National Mapping Council, 
1986). 
 

Astrogeodetic  
coordinates 

GDA94 geodetic  
by transformation 



Φ = - 25° 56’ 54.55” φ = - 25° 56’ 49.34” 
Λ = 133° 12’ 30.08” λ = 133° 12’ 34.77” 

AUSGeoid98  
vertical deflections 

GDA94 geodetic by  
vertical deflection 

ξG = + 2.32” φ = - 25° 56’ 52.23” 
ηG = - 7.93” λ = 133° 12’ 39.62” 

Table 1. GDA94 coordinates derived from astrogeodetic coordinates of the Johnston 
origin using the seven-parameter transformation and the deflections of the vertical.  

 
The results in Table 1 do not support the use of the deflection of the vertical to 
transform astrogeodetic coordinates, because the derived GDA94 coordinates are not 
too similar to the seven-parameter-transformed GDA94 coordinates.  This is at odds 
with the analysis conduced by Featherstone (1997) for a systematic 6” change in 
vertical deflections across Australia.  Therefore, the only plausible explanations for 
this discrepancy are that the AUSGeoid98 deflections of the vertical do not contain 
sufficient detail to apply coordinate transformations and/or the actual curvature of the 
plumbline over 571m (the height of the Johnston station) is not negligible.   
 
Laplace’s Equation for Azimuth 
The Laplace correction (equation 11) to the astronomic azimuth (A) introduces a 
systematic change in the orientation of a survey, for example.  This correction can 
usually be neglected for solar determinations of astronomic azimuth, but not for 
stellar determinations because of their increased precision.  The example shown in 
Table 2 refers to the GDA94 position of the Johnston origin (Table 1).  The east-west 
deflection of the vertical at the geoid has been determined from AUSGeoid98 using 
bi-cubic interpolation.  Accordingly, the effect of the curvature of the plumbline has 
also been ignored in this example.  
 

Astrogeodetic azimuth Geodetic azimuth 
45° 00’ 00.00” 44° 59’ 56.14” 

Table 2. The effect of the deflection of the vertical on azimuth 
 
From the result in Table 2, the neglect of the Laplace correction causes a change in 
orientation of a survey by 3.86”.  For instance, if a radiation is made using the 
astronomic azimuth instead of the geodetic azimuth over a line of 2km in length, 
there will be an error of approximately 37mm.  However, this example only applies 
to a survey that relies on an azimuth for its orientation.  If two or more known 
GDA94 coordinates are used as control, these provide the geodetic azimuth, so there 
is no need to apply Laplace corrections in this instance.  
 
Horizontal and Vertical Angles 
In order to illustrate the effect of neglecting deflections of the vertical on measured 
horizontal directions (D) and measured zenith angles (Z), the AUSGeoid98 vertical 
deflections are used in equations (12) and (13), respectively.  Again, the curvature of 
the plumbline is neglected and AUSGeoid98 deflections of the vertical at the geoid 
are calculated using bi-cubic interpolation.  Only the correction terms for the GDA94 
position given in Table 1 are computed, since these are independent of the 



measurement to which the correction applies.  In each case, the azimuth is taken as 
45 degrees for convenience.  The results are summarised in Table 3. 
 

Horizontal direction Zenith angle 
00.63” for z = 85°  -03.97” 
07.25” for z = 45°  -- 

Table 3. The effect of the deflections of the vertical on  
 horizontal directions and zenith angles 

 
The example in Table 3 shows that the effect of the deflection of the vertical on 
horizontal directions and zenith angles can be relatively large.  However, it should be 
pointed out that when these observations are made in conjunction with other 
observations in the gravity field, a large amount of the effect cancels.  Nevertheless, 
since the deflections of the vertical at the geoid are readily available from 
AUSGeoid98 and these terms can be computed relatively easily, they should be 
included so as to reduce their small, yet systematic, effects on the survey results.  
 
 

A CASE STUDY IN GUILDERTON, WESTERN AUSTRALIA  
 
The following case study applies deflections of the vertical at the geoid, bi-cubically 
interpolated from AUSGeoid98, to the reduction and adjustment of geodetic survey 
data collected by final-year surveying students in the School of Spatial Sciences.  
These data have been collected as part of the units Applied Field Surveying 482 and 
Applied Geodetic Surveying 482, which are conducted over a 5km by 5km area near 
Guilderton, Western Australia.  This presents a challenging case study because 
Guilderton is close to the Darling Fault, which is known to cause a large disturbance 
to the plumblines and level surfaces (eg. Friedlieb et al., 1997).   
 
The survey data were corrected for instrument calibrations and atmospheric 
refraction, then input to Geolab version 2.4d (Bitwise Ideas Inc., 1993) for reduction 
and least-squares adjustment.  The data used comprise spatial distances, horizontal 
directions, vertical angles and an astronomic azimuth with respect to a single control 
station known on the GDA94.  The Geolab software corrects for the deflection of the 
vertical, provided that this information is supplied.  Therefore, the deflections of the 
vertical at the geoid from the AUSGeoid98 model were both omitted and included to 
study their effect on the network adjustment.   
 
To determine the effectiveness of each approach, the three quality control indicators 
from a network adjustment (eg. Featherstone et al., 1998) were used.  A network 
adjustment is considered successful if: 
1. the a posteriori variance (sigma-zero) close to unity; 
2. the chi-squared hypothesis test on this estimated variance passes; and  
3. no outlying measurements remain after the adjustment.   
For each network adjustment, the same weights were applied to account for the 
different observation types, so that the only changes in these three quality control 
indicators were due to the inclusion of the vertical deflections.  Table 4 shows the 



values of the quality control indicators for the network without and with the vertical 
deflections at the geoid applied.  
 

Vertical deflections  A posteriori  
variance 

Result of  
chi-squared test 

Number of  
outliers 

Not applied 1.9883 FAIL 2 of 80 
Applied 1.1484 PASS 0 of 80 

Table 4. The effect of the deflection of the vertical on the three 
indicators of a successful network adjustment (datum: GDA94) 

 
From the results in Table 4, it is clear that the inclusion of vertical deflections 
improves the quality of the network adjustment, as indicated by the three standard 
indicators.  However, it is important to acknowledge that there are several other 
factors that could also contribute to this result, principally the accuracy of the 
measurements.  Nevertheless, given that rigorous and correct geodetic theory is being 
used, it is more likely that the inclusion of the vertical deflection, albeit at the geoid, 
provides the most plausible explanation for the improvement. 
 
 

CONCLUDING REMARK  
 
This paper has reviewed the definition and use of the deflection of the vertical and 
showed its common uses and abuses in terrestrial surveying.  The need to seriously 
consider the effects of the deflection of the vertical has come about because of the 
introduction of the GDA94.  Since the GRS80 ellipsoid associated with this new 
datum is not a best fit to the level surfaces and plumblines of the Earth’s gravity field 
over Australia, the associated (absolute) deflections of the vertical generally become 
larger.  Fortunately, however, absolute deflections of the vertical at the geoid are now 
available for the whole continent as part of the AUSGeoid98 product.  Therefore, 
since this information is available and is consistent with rigorous geodetic theory, it 
is appropriate to routinely apply corrections for deflections of the vertical to 
terrestrial survey data.   
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